Licht-im-Terrarium: Literaturdatenbank

List Resources

Displaying 1 - 3 of 3 (Bibliography: WIKINDX Master Bibliography)
Order by:

Ascending
Descending
Use all checked: 
Use all displayed: 
Use all in list: 
Directive 2006/25/ec of the european parliament and of the council of 5 april 2006 on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation) (19th individual directive within the meaning of article 16(1) of directive 89/391/eec).  
Last edited by: Sarina 2020-11-09 12:08:16
      

Artikel 1

Ziel und Geltungsbereich

1.   Mit dieser Richtlinie, der 19. Einzelrichtlinie im Sinne des Artikels 16 Absatz 1 der Richtlinie 89/391/EWG, werden Mindestanforderungen für den Schutz der Arbeitnehmer gegen tatsächliche oder mögliche Gefährdungen ihrer Gesundheit und Sicherheit durch die Exposition gegenüber künstlicher optischer Strahlung während ihrer Arbeit festgelegt.

2.   Diese Richtlinie betrifft die Gefährdung der Gesundheit und Sicherheit von Arbeitnehmern durch die Schädigung von Augen und Haut aufgrund der Exposition gegenüber künstlicher optischer Strahlung.

3.   Die Richtlinie 89/391/EWG gilt unbeschadet strengerer und/oder spezifischerer Bestimmungen der vorliegenden Richtlinie in vollem Umfang für den gesamten in Absatz 1 genannten Bereich.

 

 

Artikel 3

Expositionsgrenzwerte

(1)   Die Expositionsgrenzwerte für inkohärente Strahlung, die nicht aus natürlichen Quellen optischer Strahlung stammt, entsprechen den in Anhang I festgelegten Werten.

(2)   Die Expositionsgrenzwerte für Laserstrahlung entsprechen den in Anhang II festgelegten Werten.

 

Artikel 13

Praktischer Leitfaden

Zur Erleichterung der Durchführung dieser Richtlinie erstellt die Kommission einen praktischen Leitfaden für die Bestimmungen der Artikel 4 und 5 und der Anhänge I und II.

 

ANHANG I

Inkohärente optische Strahlung

Die biophysikalisch relevanten Expositionswerte für optische Strahlung lassen sich anhand der nachstehenden Formeln bestimmen. Welche Formel zu verwenden ist, hängt von dem Bereich der von der Quelle ausgehenden Strahlung ab; die Ergebnisse sind mit den entsprechenden Emissionsgrenzwerten der Tabelle 1.1 zu vergleichen. Für die jeweilige Strahlenquelle können mehrere Expositionswerte und entsprechende Expositionsgrenzwerte relevant sein.

 

Tabelle 1.1

Emissionsgrenzwerte für inkohärente optische Strahlung

f. 300 — 700 (Blaulicht) EB = 0,01  W/m² = 10.000 µW / (100*100)cm² = 1 µW/cm²

Bullough, J., & Mies, M. S. (2000). The blue-light hazard: A review. Journal of the Illuminating Engineering Society, 29, 6–14.  
Last edited by: Sarina 2020-12-29 09:11:00
      The ACGIH (American Conference of Governmental and Industrial Hygienists) has specified maximum exposure limits to energy in this part of the spectrum, known as die bluelight hazard limit. More recently, the IESNA has published an algorithm for calculating the blue-light hazard based on the ACGIH recommendations and a framework for classifying and labeling light  sources according to their potential for risk 

The optical media of the eye (Figure 1) transmit most visible and near-IR (out to about 1400 nm) energy to the retina and absorb most, but not all, near-UV radiation. IR energy tends to elevate the temperature of the optical media and may increase risk of IR or "glassblower's" cataract.8 UV energy can cause photokeratitis, a painful inflammation of the outer corneal layer, and may also be a contributing factor in many forms of cataract.1 Because the energy reaching the retina falls largely between 400 and 1400 nm, this region of the spectrum is termed the retinal hazard region

Animal studies have shown, however, prolonged exposure to luminances near those of present T8 and compact fluorescent lamps might permanently affect vision in some species,9 although such effects have never been documented in humans, and these luminances are not considered hazardous to humans.4

These results led researchers to the conclusion light can contribute to harmful chemical reactions in the retinal media, and the resulting lesions are termed photochemical lesions. Such lesions are areas of discoloration without distinct borders on the retina visible to the ophthalmologist, and are the primary symptom of photochemical damage. The precise nature of these chemical reactions are not currently understood.4

In some animals, it was found the action spectrum for photochemical lesions was similar to the absorption spectrum of melanin.11,18 On the other hand, exposure to human pigment epithelium cells resulted in photochemical lesions appearing to be related not to melanin, but rather, another chemical.

The procedure specified by the IESNA for calculating the blue-light hazard is published in recommended practice document ANSI-/IESNA RP-27.4 It provides algorithms for both extended-area and near-point sources, and is not discussed in detail in this report. The algorithms allow the determination of the maximum time and intensity within an eight-hour period recommended to protect against photochemical damage to the retina. The calculated limits incorporate large safety margins to ensure against retinal damage and even the maximum permitted exposures should not result in photochemical damage.10

For practical purposes with "white" light sources, any condition resulting in direct exposure to luminances under 10,000 cd/m2 is unlikely to present a risk of photochemical injury to the retina.4 For such sources, calculation of the blue-light hazard is not necessary.

However, because fluorescent lamps also have low luminances (T12 lamps: 8000 cd/m2; T8 lamps: 11,000 cd/m2; T5 lamps: 20,000 cd/m2), their potential for risk of photochemical injury is negligible, as demonstrated by Table 1.

 

Dain, S. J. (2020). The blue light dose from white light emitting diodes (leds) and other white light sources. Ophthalmic and Physiological Optics, 40(5), 692–699.  
Last edited by: Sarina 2020-12-29 09:19:53
      Results: The amount of blue light in a source is essentially independent of the technology of the light source, but closely related to the correlated colour temperature. Conclusions: Fluorescent lamps show essentially the same proportions of blue light and LEDs do not represent a special case, given the same correlated colour temperature. Blue-blocking lenses are no more needed with LED sources than with other screen illumination methods or with fluorescent lighting. There is no evidence base on which to recommend blue-blocking lenses for indoor applications
wikindx 6.1.0 ©2003-2020 | Total resources: 1366 | Username: -- | Bibliography: WIKINDX Master Bibliography | Style: American Psychological Association (APA) | Database queries: 23 | DB execution: 0.01816 secs | Script execution: 0.07564 secs